2.653 (2) \AA] to complete a distorted octahedral environment around Cu^{11}. The $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 1-\mathrm{O} 2$ distances [1.268 (4) and 1.227 (4) \AA, respectively] are significantly different.

The propionate chelate angle $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$ is very acute at $54.23(8)^{\circ}$. When propionate is coordinated as a chelate, the mean $\mathrm{Cu}-\mathrm{O}$ bond distance of $2.30 \AA$ is about $0.33 \AA$ longer than when coordinated in a syn-syn arrangement (Melník, 1982).

Experimental

The title compound was prepared by treating methyl 3 -pyridylcarbamate ($3.043 \mathrm{~g}, 0.02 \mathrm{~mol}$) with copper(II) propionate ($2.097 \mathrm{~g}, 0.01 \mathrm{~mol}$) in hot methanol solution $(50 \mathrm{ml})$. The crude product was recrystallized from methanol to give single crystals.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}-\right.\right.$
$\left.\left.\mathrm{N}_{2} \mathrm{O}_{2}\right)_{2}\right] \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=518.5$
Tetragonal
$P 4_{2} / n$
$a=20.674$ (3) \AA
$c=5.8040(10) \AA$
$V=2480.7(7) \AA^{3}$
$Z=4$
$D_{x}=1.388 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.40 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in
$\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CHBr}_{3}$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54180 \AA$
Cell parameters from 25 reflections
$\theta=4.5-12.9^{\circ}$
$\mu=1.648 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Square prism
$0.45 \times 0.32 \times 0.25 \mathrm{~mm}$ Violet

Data collection

Syntex $P 2_{1}$ diffractometer

$$
\theta_{\text {max }}=80.30^{\circ}
$$

$\theta-2 \theta$ scans
Absorption correction: none
$h=-19 \rightarrow 26$
2996 measured reflections
$k=0 \rightarrow 26$
2640 independent reflections
$l=0 \rightarrow 7$
1508 reflections with
2 standard reflections every 100 reflections intensity decay: 15\%
$R_{\text {int }}=0.079$

Refinement

$$
\begin{aligned}
& \text { Refinement on } F^{2} \\
& R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043 \\
& w R\left(F^{2}\right)=0.165 \\
& S=0.789 \\
& 2590 \text { reflections } \\
& 158 \text { parameters } \\
& \text { H atoms } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0802 P)^{2}\right. \\
& \quad+2.2069 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

$$
(\Delta / \sigma)_{\max }=0.001
$$

$\Delta \rho_{\text {max }}=0.46 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.0013 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left({ }^{\circ},^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O} 1$	$1.955(2)$	$\mathrm{O} 3-\mathrm{Cl1}$	$1.439(4)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.025(2)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.330(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.268(4)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.342(3)$
$\mathrm{O} 2-\mathrm{Cl}$	$1.227(4)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.355(3)$
$\mathrm{O} 3-\mathrm{ClO}$	$1.337(4)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.395(4)$

$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1^{i}$	$90.61(8)$	$\mathrm{Cl} 0-\mathrm{O} 3-\mathrm{Cll}$	$115.7(3)$
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 1$	$89.39(8)$	$\mathrm{C} 4-\mathrm{Nl}-\mathrm{Cu}$	$121.0(2)$
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{Cu}$	$107.2(2)$	$\mathrm{C} 8-\mathrm{Nl}-\mathrm{Cu}$	$119.4(2)$

Symmetry code: (i) $-x, 1-y,-z$.
The instability of the crystal at room temperature precluded the application of an absorption correction.
Data collection: Syntex $P 2_{1}$ software. Cell refinement: Syntex $P 2_{1}$ software. Data reduction: XP21 (Pavelčík, 1993). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: $\operatorname{SHELXL93}$ (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1193). Services for accessing these data are described at the back of the journal.

References

Borel, M. M., Busnot, F., Busnot, A., Leclaire, A. \& Bernard, M. A. (1981). Rev. Chim. Miner. 18, 235-240.

Borel, M. M., Busnot, A. \& Leclaire, A. (1976). J. Inorg. Nucl. Chem. 38, 1557-59.
Borel, M. M. \& Leclaire, A. (1976a). Acta Cryst. B32, 1273-1275.
Borel, M. M. \& Leclaire, A. (1976b). Acta Cryst. B32, 3333-3337.
Borel, M. M. \& Leclaire, A. (1978). Acta Cryst. B34, 99-102.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Melník, M. (1982). Coord. Chem. Rev. 42, 259-293.
Melník, M., Koman, M., Macašková, Ľ., Glowiak, T., Grobelny, R. \& Mrozinski, J. (1998). Polyhedron. In the press.
Pavelčík, F. (1993). XP21. Pharmaceutical Faculty, Comenius University, Bratislava, Slovakia.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Smolander, M., Macko, M., Valko, M. \& Melník. M. (1992). Acta Chem. Scand. 46, 29-33.

Acta Cryst. (1998). C54, 1605-1607

Dichlorobis(quinoline-N)zinc(II)

Yong Cu, Dellang Long, Wendan Chen and Jinshun Huang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China. E-mail: cuiy@ms.fjirsm.ac.cn

(Received 23 March 1998; accepted 20 May 1998)

Abstract

In the structure of the title complex, $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, the Zn atom is coordinated by two chloride ligands and by two N atoms from two quinoline ligands. The geometry around the Zn atom is distorted tetrahedral,

with $\mathrm{Zn}-\mathrm{N}$ bond lengths of 2.050 (3) and 2.074 (3) \AA, $\mathrm{Zn}-\mathrm{Cl}$ bond lengths of 2.241 (1) and 2.244 (1) \AA, and $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ and $\mathrm{Cl}-\mathrm{Zn}-\mathrm{Cl}$ bond angles of $109.3(1)$ and $115.47(5)^{\circ}$, respectively.

Comment

In attempting to synthesize a heterometallic zinc(II)lanthanide(III) complex containing acetate and quinoline ligands, we isolated the title complex, $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, (I).

(I)

The crystal structure of (I) consists of discrete neutral $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$ molecules (Fig. 1). The Zn atom is coordinated by two chloride ligands and two N atoms from two quinoline groups in a distorted tetrahedral arrangement, with $\mathrm{Zn}-\mathrm{N}$ bond lengths of 2.050 (3) and 2.074 (3) $\AA, \mathrm{Zn}-\mathrm{Cl}$ bond lengths of 2.241 (1) and $2.244(1) \AA$, and $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ and $\mathrm{Cl}-$ $\mathrm{Zn}-\mathrm{Cl}$ bond angles of 109.3 (1) and $115.47(5)^{\circ}$, respectively. The $\mathrm{Zn}-\mathrm{N}$ and $\mathrm{Zn}-\mathrm{Cl}$ distances are in accord with the corresponding distances reported for dichlorobis(imidazole)zinc(II) [$\mathrm{Zn}-\mathrm{N} \quad 1.955$ (11) and 2.020 (11) \AA, and $\mathrm{Zn}-\mathrm{Cl} 2.258$ (3) and 2.239 (3) \AA; Lundberg, 1966], dichlorobis(1,2-dimethylimidazole)zinc(II) [$\mathrm{Zn}-\mathrm{N} 2.006$ (3) and 2.008 (3) A , and $\mathrm{Zn}-$ Cl 2.2509 (8) and $2.2468(8) \AA$; Bharadwaj et al., 1991], dichlorobis(purine)zinc(II) [$\mathrm{Zn}-\mathrm{N} 2.027$ (3) and 2.033 (4) \AA, and $\mathrm{Zn}-\mathrm{Cl} 2.222$ (1) and 2.229 (2) \AA; Laity \& Taylor, 1995] and bis(antazoline)dichlorozinc(II) $[\mathrm{Zn}-\mathrm{N} 2.039$ (8) and 2.004 (9) \AA, and $\mathrm{Zn}-\mathrm{Cl}$ 2.243 (3) and 2.259 (3) A; Parvez \& Rusiewicz, 1995].

Fig. 1. A view of the molecular structure of (I) showing 50% probability displacement ellipsoids.

The molecular geometry within the quinoline ligands is unexceptional. The dihedral angle formed by the normals to the two quinoline rings is $67.06(14)^{\circ}$.

Experimental

A mixture of $\mathrm{Zn}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}, \mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and quinoline (molar ratio 2:1:1) in water was refluxed for 5 h . The resulting solution was allowed to stand in air and colourless crystals of the title complex were deposited after three weeks.

Crystal data

$\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=394.58$
Triclinic
$P \overline{1}$
$a=8.7690$ (1) A
$b=9.5801$ (3) \AA
$c=11.0747(3) \AA$
$\alpha=80.513(1)^{\circ}$
$\beta=72.546(1)^{\circ}$
$\gamma=71.890(2)^{\circ}$
$V=840.93(4) \AA^{3}$
$Z=2$
$D_{x}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD
diffractometer
ω scans
Absorption correction:
multi-scan (SADABS;
Sheldrick, 1996)
$T_{\text {min }}=0.542, T_{\text {max }}=0.931$
3364 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$u \cdot R\left(F^{2}\right)=0.131$
$S=1.020$
2377 reflections
208 parameters
H atoms riding, fixed
isotropic $U=0.05 \AA^{2}$

$$
w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0913 P)^{2}\right]
$$

$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.52 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.02 \mathrm{e}^{-3}$
($1.02 \AA$ from Zn)
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

$\mathrm{Zn}-\mathrm{Cll}$	$2.244(1)$	$\mathrm{Zn}-\mathrm{N} 1$	$2.074(3)$
$\mathrm{Zn}-\mathrm{Cl} 2$	$2.241(1)$	$\mathrm{Zn}-\mathrm{N} 2$	$2.050(3)$
$\mathrm{Cll}-\mathrm{Zn}-\mathrm{Cl2}$	$115.47(5)$	$\mathrm{Cl} 2-\mathrm{Zn}-\mathrm{N} 1$	$106.3(1)$
$\mathrm{Cl1}-\mathrm{Zn}-\mathrm{N} 1$	$108.7(1)$	$\mathrm{Cl2}-\mathrm{Zn}-\mathrm{N} 2$	$108.3(1)$
$\mathrm{Cl1}-\mathrm{Zn}-\mathrm{N} 2$	$108.6(1)$	$\mathrm{N} 1-\mathrm{Zn}-\mathrm{N} 2$	$109.3(1)$

Data collection: SMART (Siemens, 1995). Cell refinement: SMART and SAINT (Siemens, 1995). Data reduction: SAINT (Siemens, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1994). Software used to prepare material for publication: SHELXTLPC.

The authors thank the National Science Foundation of China for financial support of this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1252). Services for accessing these data are described at the back of the journal.

References

Bharadwaj, P. K., Schugar, H. J. \& Potenza, J. A. (1991). Acta Cryst. C47, 754-757.
Laity, H. L. \& Taylor, M. R. (1995). Acta Cryst. C51, 1791-1793.
Lundberg, B. K. S. (1966). Acta Cryst. 21, 901-909.
Parvez, M. \& Rusiewicz, M. (1995). Acta Cryst. C51, 2277-2279.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1994). SHELXTLJPC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 1607-1608

Trichlorooxo(triphenylphosphine)(triphenylphosphine oxide)rhenium(\mathbf{V})

Jeffrey C. Bryan, ${ }^{a}$ Marc C. Perry ${ }^{b}$ and Jeffrey B. Arterburn ${ }^{b}$
${ }^{a}$ Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6119, USA, and
${ }^{b}$ Department of Chemistry, New Mexico State University, Box 30001, Department 3C, Las Cruces, NM 88003, USA.
E-mail: bryanjc@ornl.gov

(Received I7 April 1998; accepted I0 June 1998)

Abstract

The title complex, $\left[\mathrm{ReCl}_{3} \mathrm{O}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OP}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, is produced in a reaction between $\left[\operatorname{Re}(\mathrm{O}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and ethyl 2-hydroxymethyl sulfoxide. The structure is compared to that of $\left[\operatorname{Re}(\mathrm{O}) \mathrm{Cl}_{3}\left(\mathrm{PPhEt}_{2}\right)\left(\mathrm{OPPhEt}_{2}\right)\right]$. The $\mathrm{Re}-\mathrm{Cl}$ distances are shorter [2.361 (2)-2.384 (2) A] and the $\mathrm{Re}-\mathrm{P}$ distance is longer [2.506 (2) \AA] in the title complex.

\section*{Comment}

A variety of interesting and synthetically useful O-atom transfer reactions from sulfoxide substrates catalyzed by the precursor complex $\left[\operatorname{Re}(\mathrm{O}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ have recently been reported (Bryan et al., 1987; Arterburn \&

Perry, 1996; Arterburn \& Nelson, 1996; Arterburn et al., 1997). This compound was known to react with dimethyl sulfoxide in the presence of hydrochloric acid to form the mixed dimethylsulfide-triphenylphosphine oxide complex $\left[\operatorname{Re}(\mathrm{O}) \mathrm{Cl}_{3}\left(\mathrm{SMe}_{2}\right)\left(\mathrm{OPPh}_{3}\right)\right.$]. However, no intermediate complexes from the catalytic reactions in organic solvents have yet been structurally identified. The precursor complex was found to react with one equivalent of ethyl 2-hydroxyethyl sulfoxide, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, at ambient temperature to give a purple solution. The title complex, (I), and amorphous purple solids were obtained following precipitation with diethyl ether. These results are consistent with catalytic pathways involving coordinated Re^{V}-oxo complexes as intermediates.

(I)

A distorted octahedral coordination geometry is observed around Re (Fig. 1). The major distortion is an increase in the $\mathrm{O} 1-\mathrm{Re}-\mathrm{Cl}$ angles, which is commonly observed in octahedral complexes containing a

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

